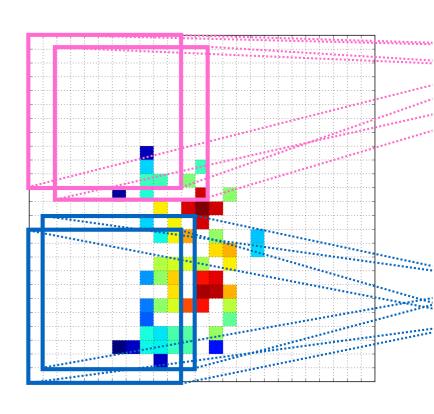
Generative ML applications for simulations in colliders

Benjamin Nachman

Lawrence Berkeley National Laboratory

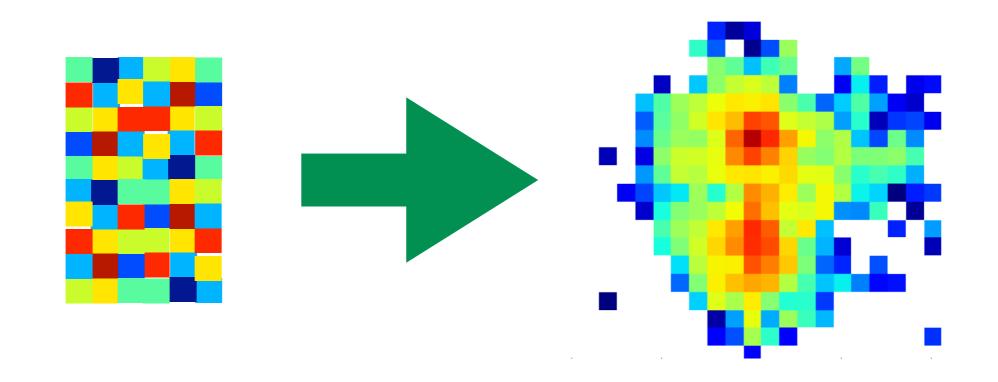
bpnachman.com bpnachman@lbl.gov



AI4EIC September 7, 2021

Brief reminder: generative models

A generator is nothing other than a function that maps random numbers to structure.



Deep generative models: the map is a deep neural network.

Tools

GANS

Generative Adversarial Networks

NFSNormalizing Flows

VAEs

Variational Autoencoders

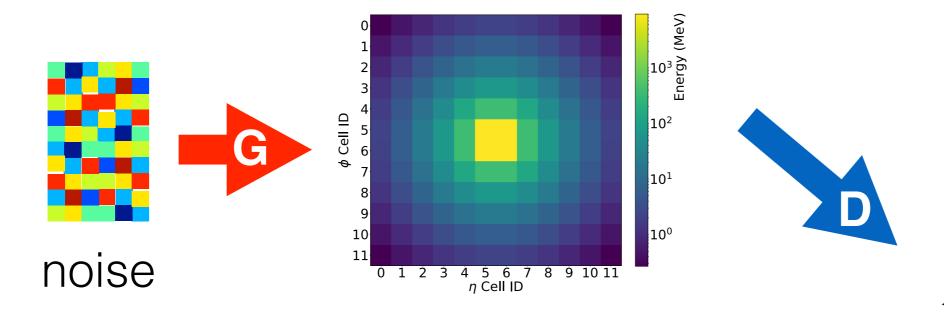
Deep generative models: the map is a deep neural network.

Reminder: GANs

4

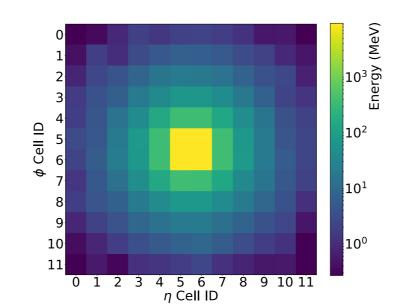
Generative Adversarial Networks (GANs):

A two-network game where one maps noise to structure and one classifies images as fake or real.



{real,fake}

When **D** is maximally confused, **G** will be a good generator

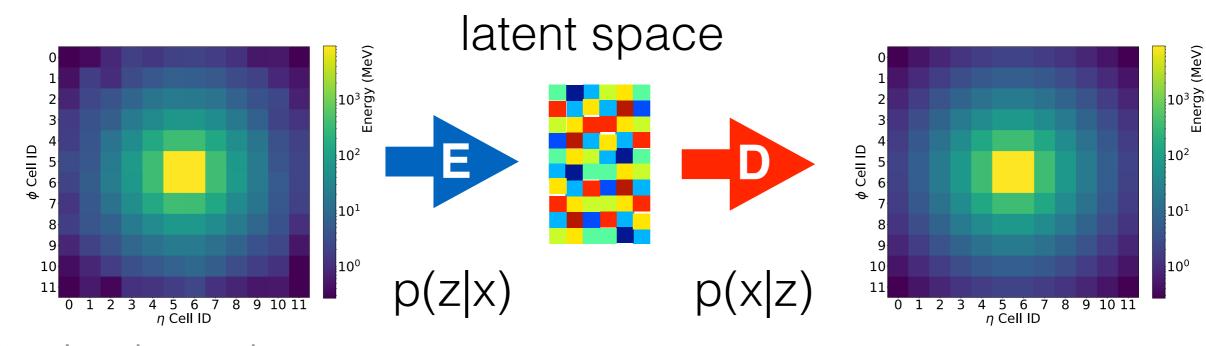


Physics-based simulator or data

Reminder: VAEs

Variational Autoencoders (VAEs):

A pair of networks that embed the data into a latent space with a given prior and decode back to the data space.



Physics-based simulator or data

encoder

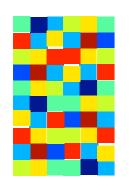
Probabilistic Probabilistic decoder

Reminder: NFs

Normalizing Flows (NFs):

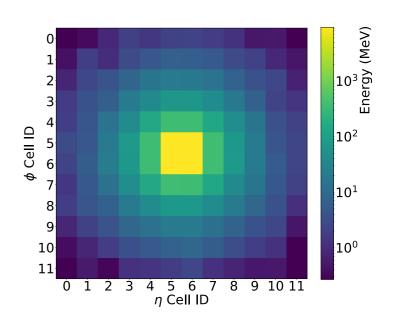
A series of invertible transformations mapping a known density into the data density.

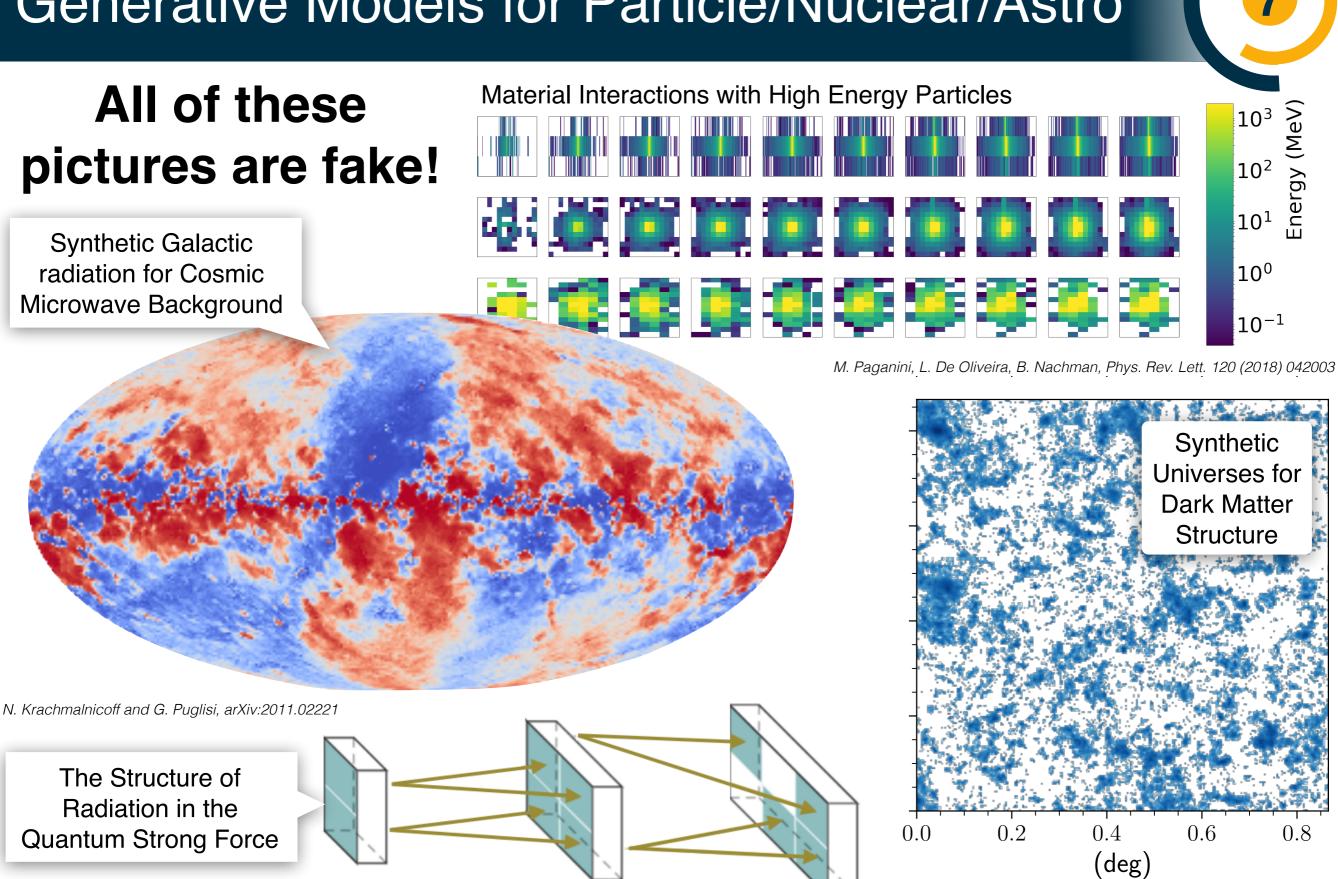
Optimize via maximum likelihood



Invertible transformations with tractable Jacobians

$$p(x) = p(z) |dF^{-1}/dx|$$





Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582

M. Mustafa, et al., Comp. Astrophysics and Cosmology 6 (2019)

All of these pictures are fake!

Synthetic Galactic radiation for Cosmic Microwave Background

Material Interactions with High Energy Particles

Accelerate Slow Detector Simulations

10³ NeW 10⁰ 10⁰

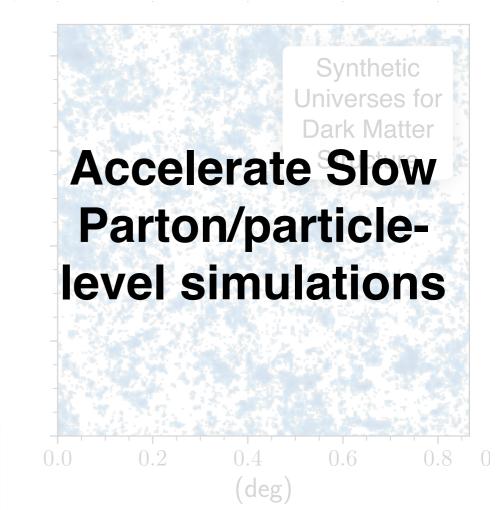
 10^{-1}

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 04200

Background estimation

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

The Structur Infer Parton/particle-Radiation in the Quantum Strong Forclevel Dynamics



9

All of these pictures are fake!

Synthetic Galactic radiation for Cosmic Microwave Background

Material Interactions with High Energy Particles

Accelerate Slow Detector Simulations

10³ NeW (MeV)

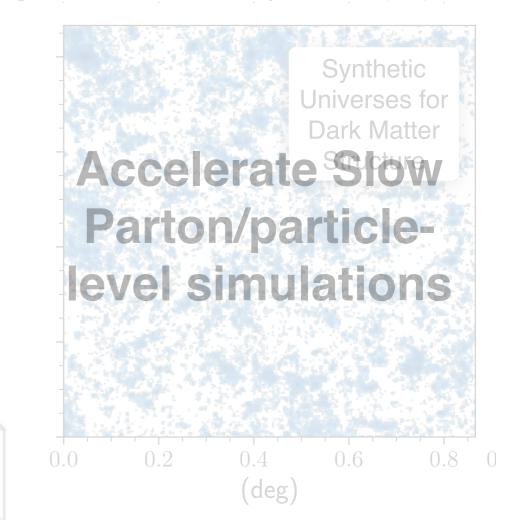
 10^{-1}

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 04200.

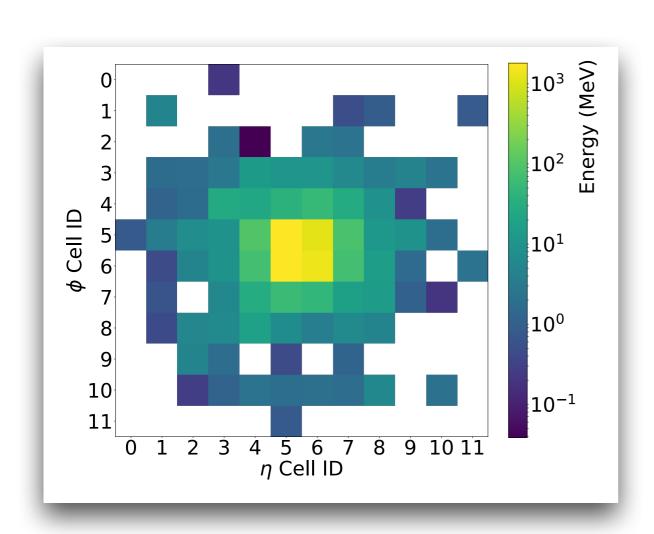
Background estimation

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

The Structure of Parton/particle-Radiation in the Quantum Strong Forcevel Dynamics



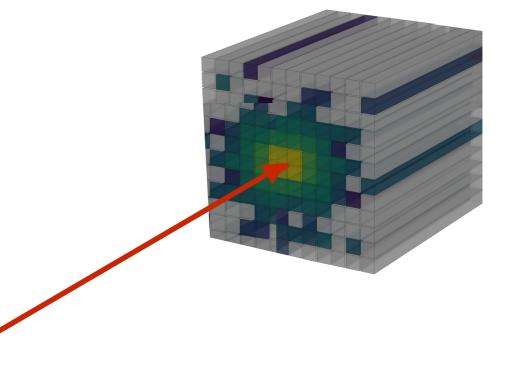
Accelerating Detector Simulations



Calorimeters are often the slowest to simulate

stopping particles requires simulating interactions of all energies

Grayscale images:
Pixel intensity =
energy deposited

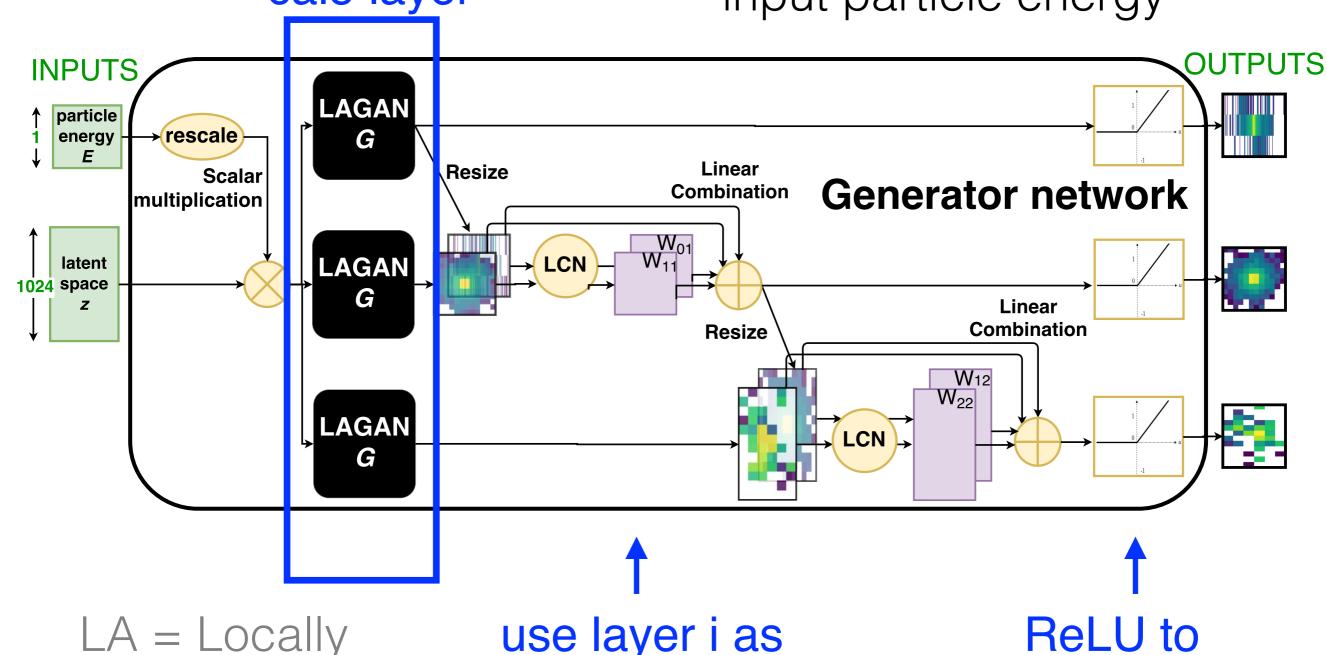


Introducing CaloGAN

11

One image per calo layer

One network per particle type; input particle energy

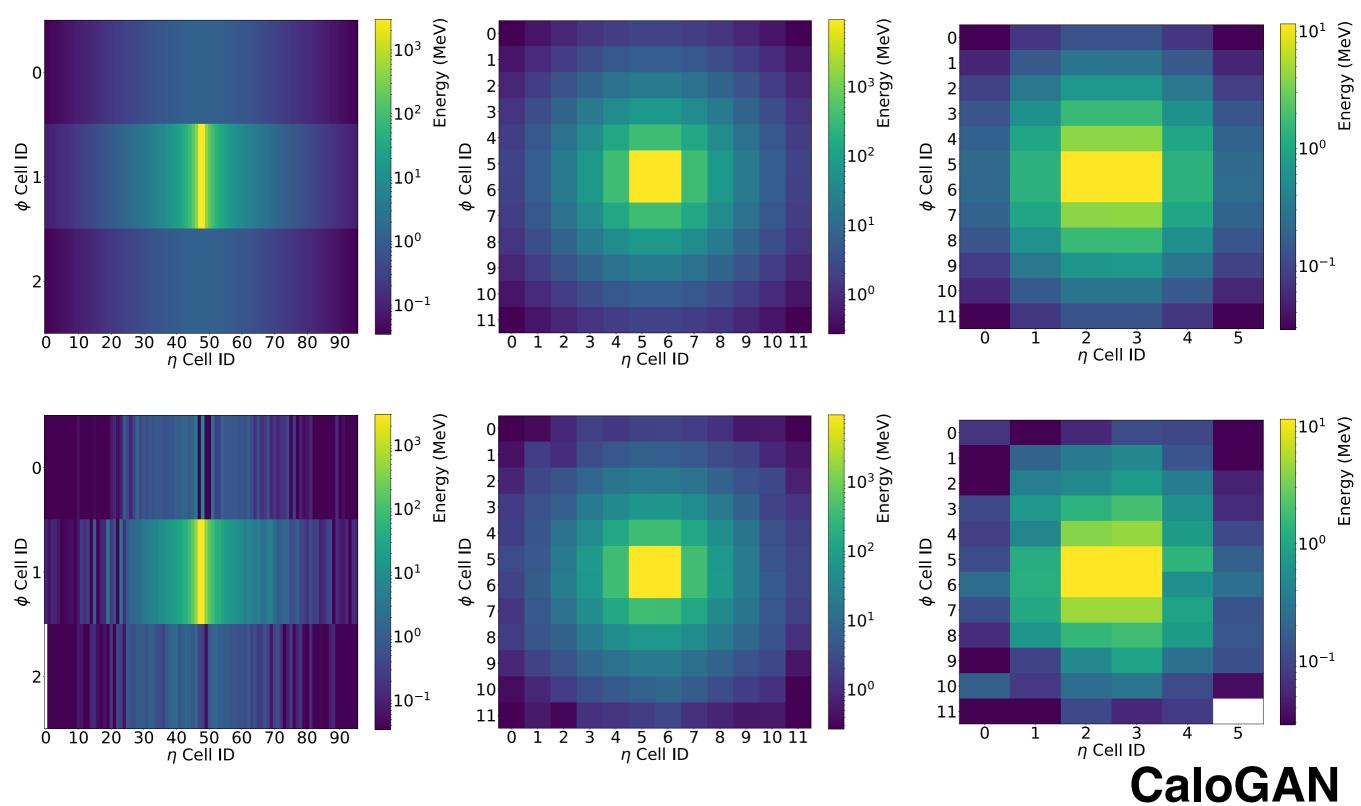


LA = Locally Aware, like a CNN use layer i as input to layer i+1

ReLU to encourage sparsity

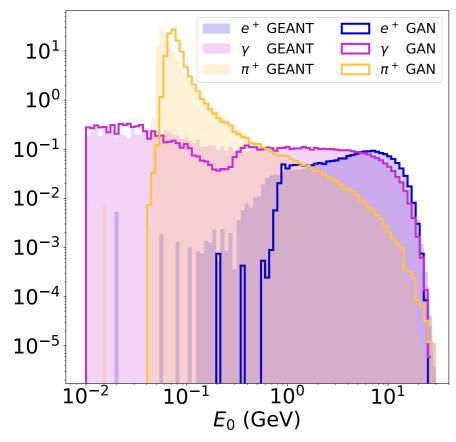
M. Paganini, L. de Oliveira, B. Nachman, 1705.02355

Geant4

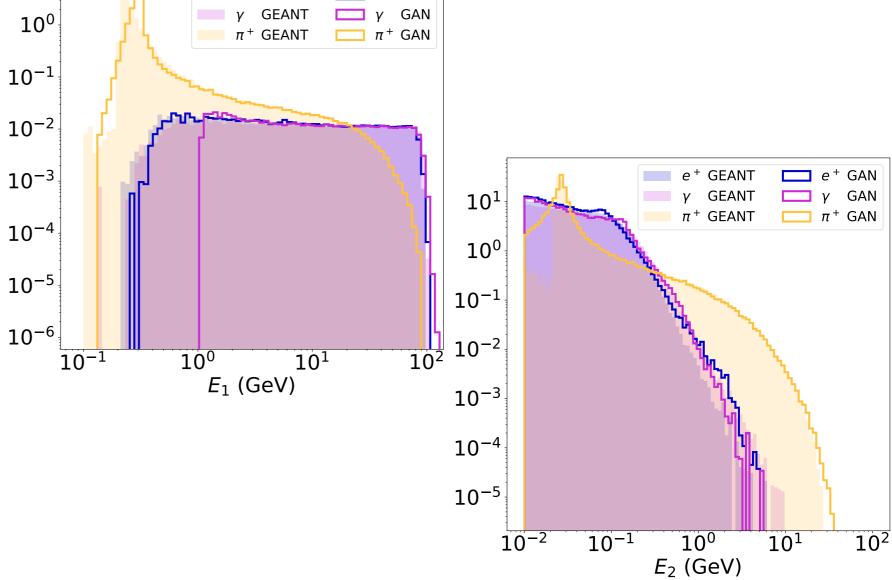


GEANT

Performance: energy per layer

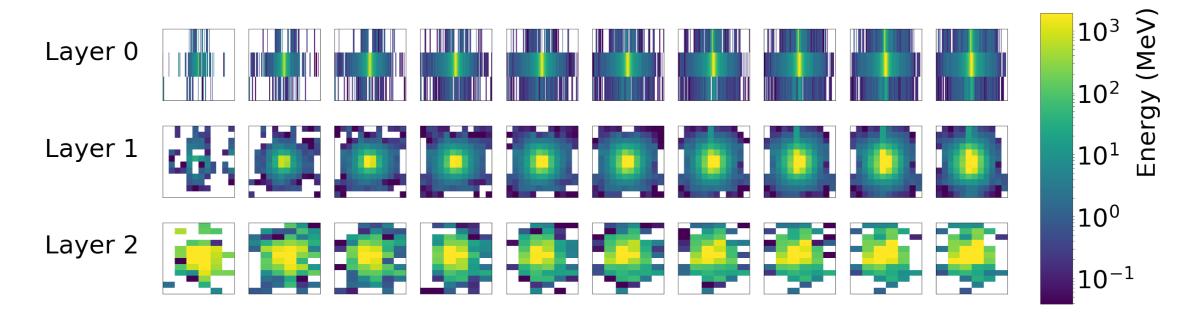


Pions deposit much less energy in the first layers; leave the calorimeter with significant energy

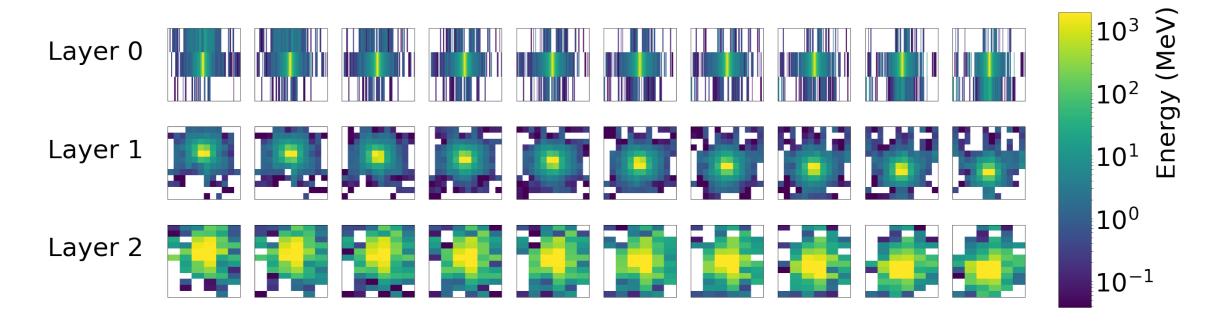


Conditioning

Fix noise, scan latent variable corresponding to energy



Fix noise, scan latent variable corresponding to x-position



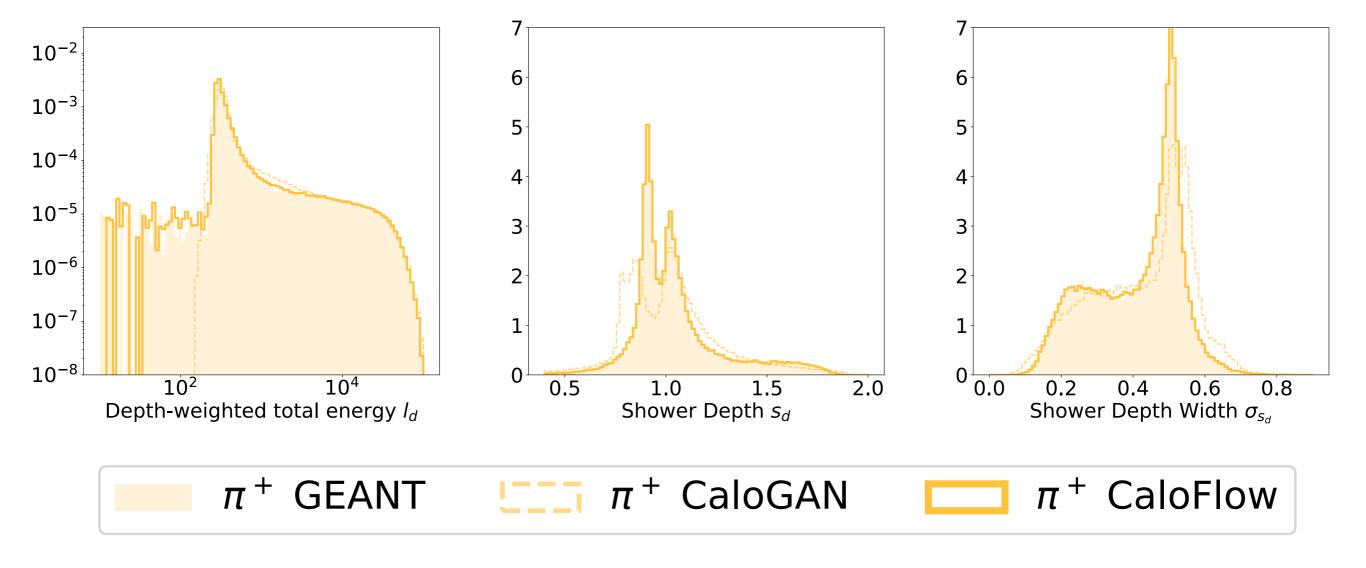
Timing

Generation Method	Hardware	Batch Size	milliseconds/shower
GEANT4	CPU	N/A	1772 -
CALOGAN	CPU Intel Xeon E5-2670	1	13.1
		10	5.11
		128	2.19
		1024	2.03
		1	14.5
		4	3.68
	GPU	128	0.021
	NVIDIA K80	512	0.014
		1024	0.012

(clearly these numbers have changed as both technologies have improved - this is simply meant to be qualitative & motivating!)

Current State of the art

Generative models have gotten much better; flow models are particularly promising. Added bonus: have an explicit density.



many other papers - see Living Review

Current State of the art

Generative models have gotten much better: flow models are

AUC / JSD		DNN		
		vs. CaloGAN	vs. CaloFlow	
e^+	unnormalized	1.000(0) / 0.993(1)	0.847(8) / 0.345(12)	
	normalized	1.000(0) / 0.997(0)	0.869(2) / 0.376(4)	
γ	unnormalized	1.000(0) / 0.996(1)	0.660(6) / 0.067(4)	
	normalized	1.000(0) / 0.994(1)	0.794(4) / 0.213(7)	
π^+	unnormalized	1.000(0) / 0.988(1)	0.632(2) / 0.048(1)	
	normalized	1.000(0) / 0.997(0)	0.751(4) / 0.148(4)	

Output is nearly indistinguishable from Geant4!

AUC = 1 means easily distinguishable, AUC = 0.5 means not distinguishable

Depth-weighted total energy I_d

Shower Depth s_d

Shower Depth Width σ_{S_d}

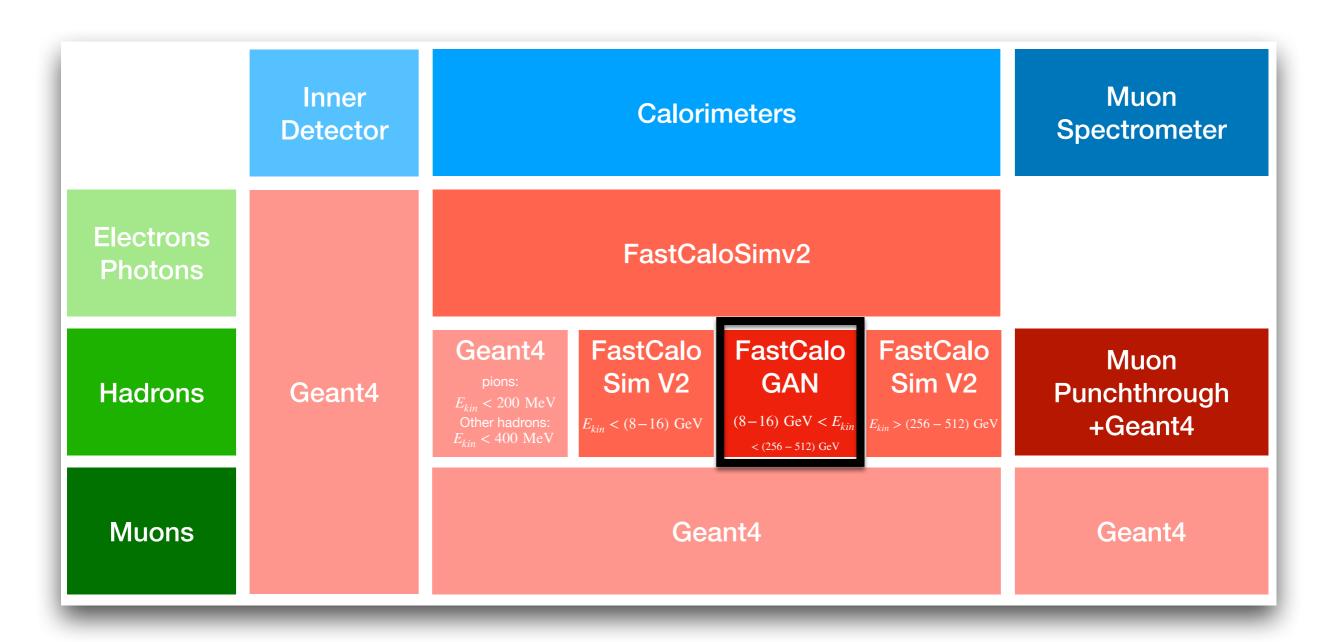
 π^+ GEANT

 π^+ CaloGAN

 π^+ CaloFlow

many other papers - see Living Review

Integration into real detector sim.

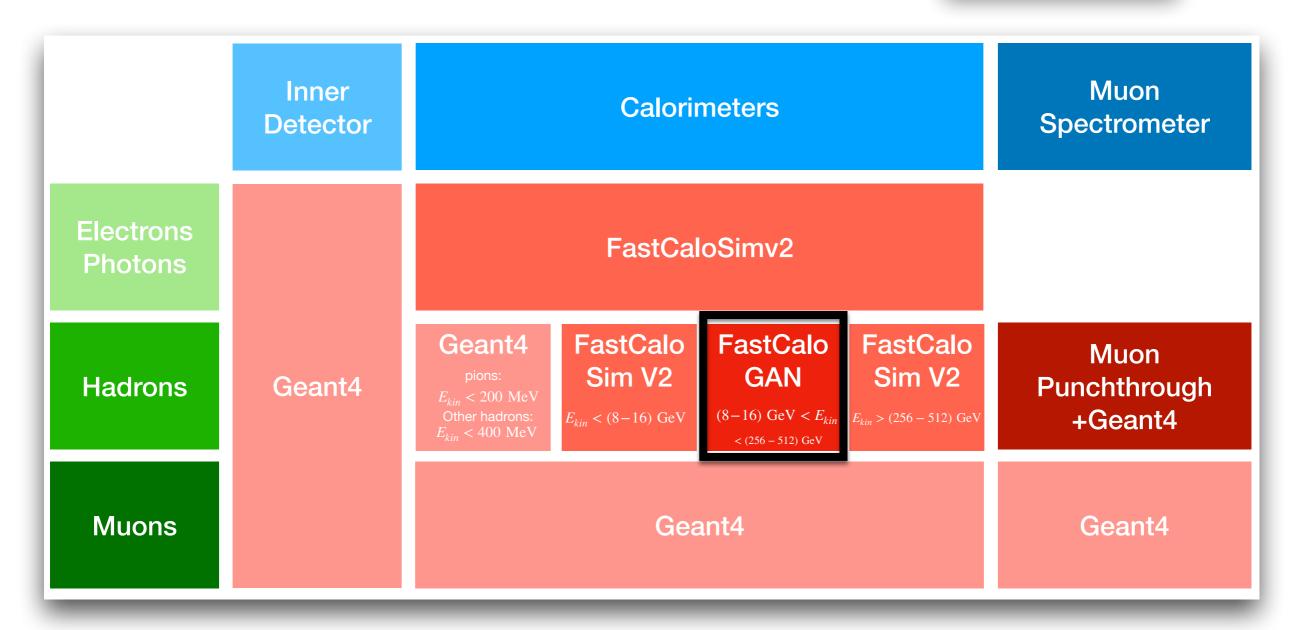


The ATLAS Collaboration fast simulation (AF3) now includes a GAN at intermediate energies for pions

Integration into real detector sign

came out today!

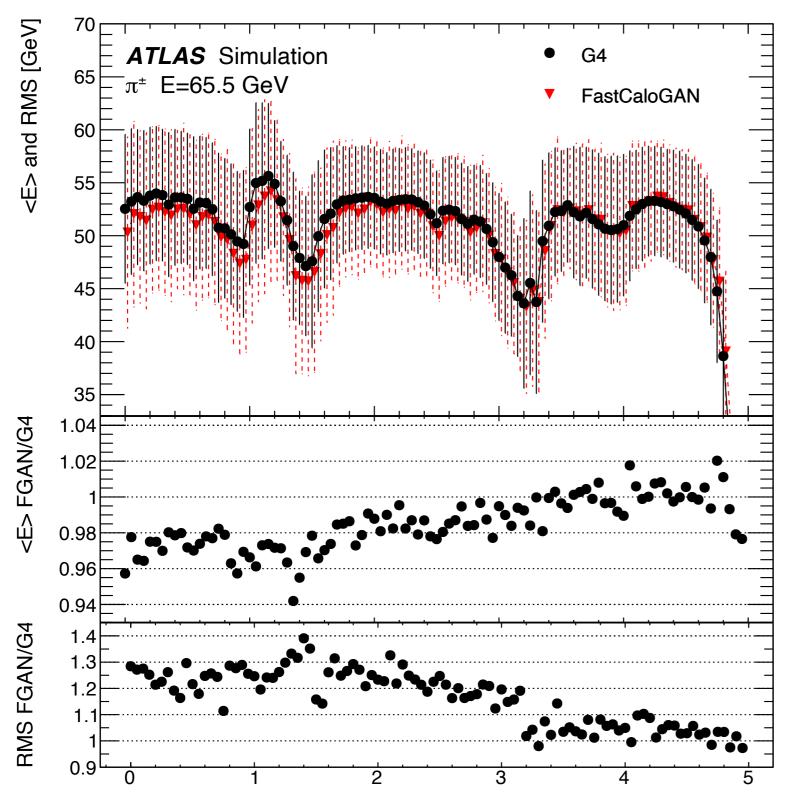
19



The ATLAS Collaboration fast simulation (AF3) now includes a GAN at intermediate energies for pions

Integration into real detector si

came out today!

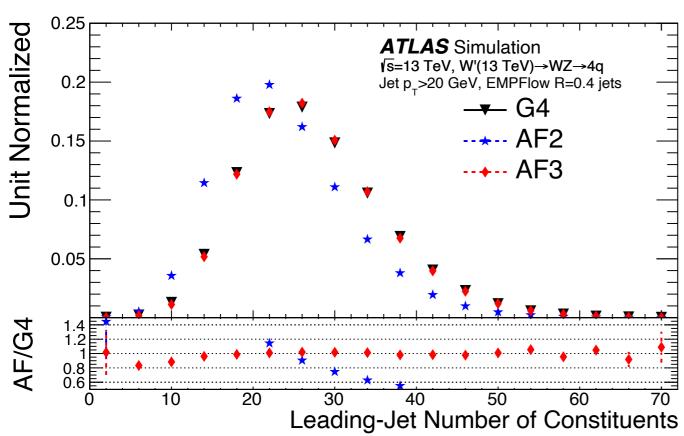


The GAN architecture is relatively simple, but it is able to match the energy scale and resolution well.

There is one GAN per η slice

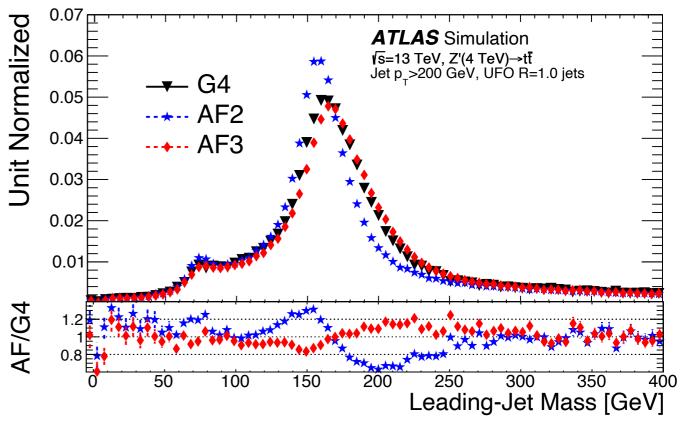
Integration into real detector si

came out today!



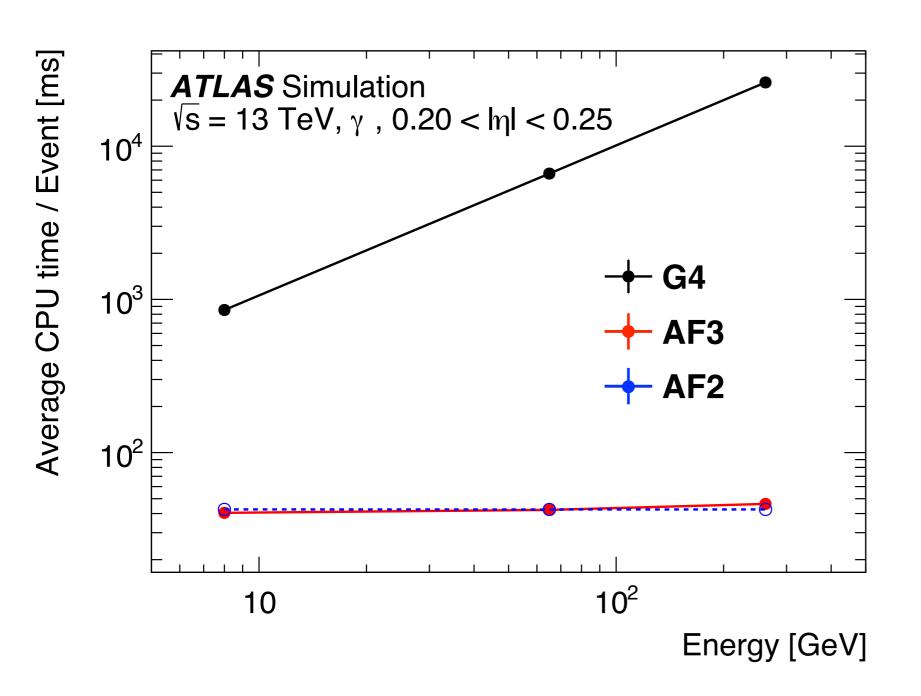
The new fast simulation (AF3) significantly improves jet substructure with respect to the older one (AF2)

Ideally, the same calibrations derived for full sim. (Geant4-based) can be applied to the fast sim.



Integration into real detector si

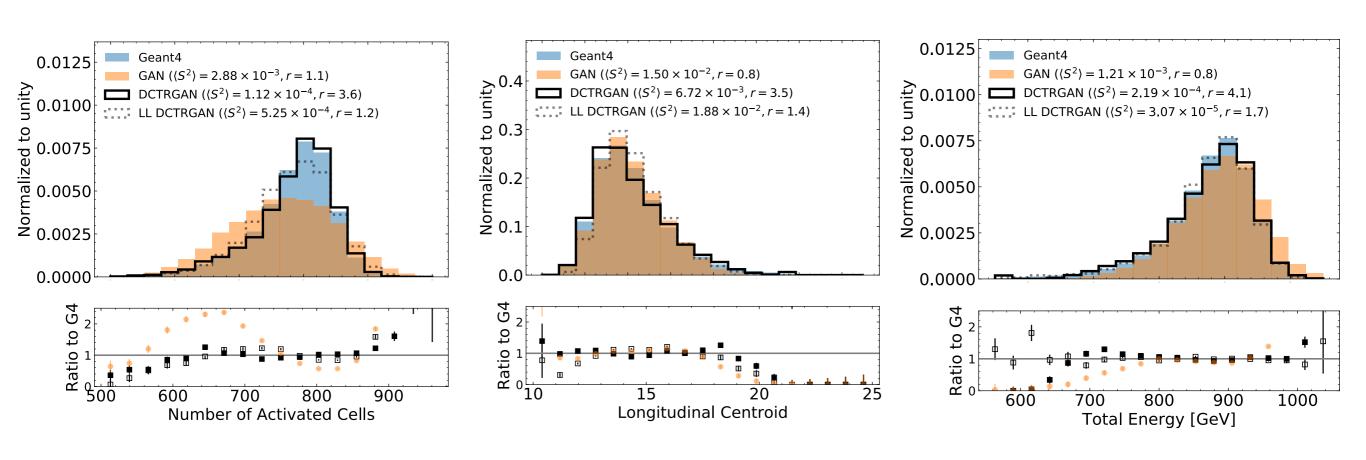
came out today!



As expected, the fast sim. timing is independent of energy, while Geant4 requires more time for higher energy.

Refining Simulations

As we move towards precision, we may need to complement primary generative models with post-hoc correction models (e.g. via reweighting)



24

All of these pictures are fake!

Synthetic Galactic radiation for Cosmic Microwave Background

Material Interactions with High Energy Particles

Accelerate Slow Detector Simulations

10³ (MeV) (MeV) 10⁰ 10⁰

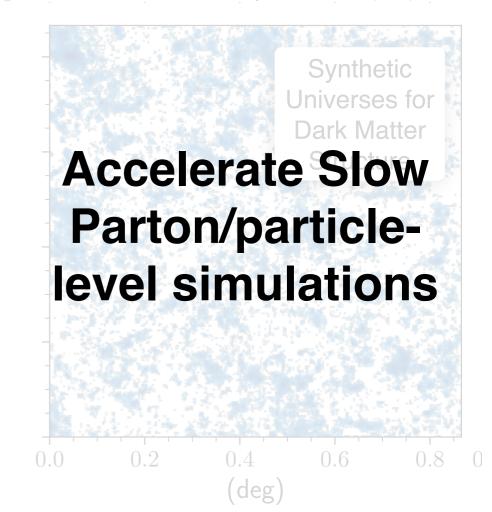
 10^{-1}

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 04200

Background estimation

N. Krachmalnicoff and G. Puglisi, arXiv:2011.0222

The Structure of Parton/particle-Radiation in the Quantum Strong Forcevel Dynamics



Accelerating Parton/Particle Sim.*

Flat jet images with GANs

M. Paganini, L. de Oliveira, B. Nachman

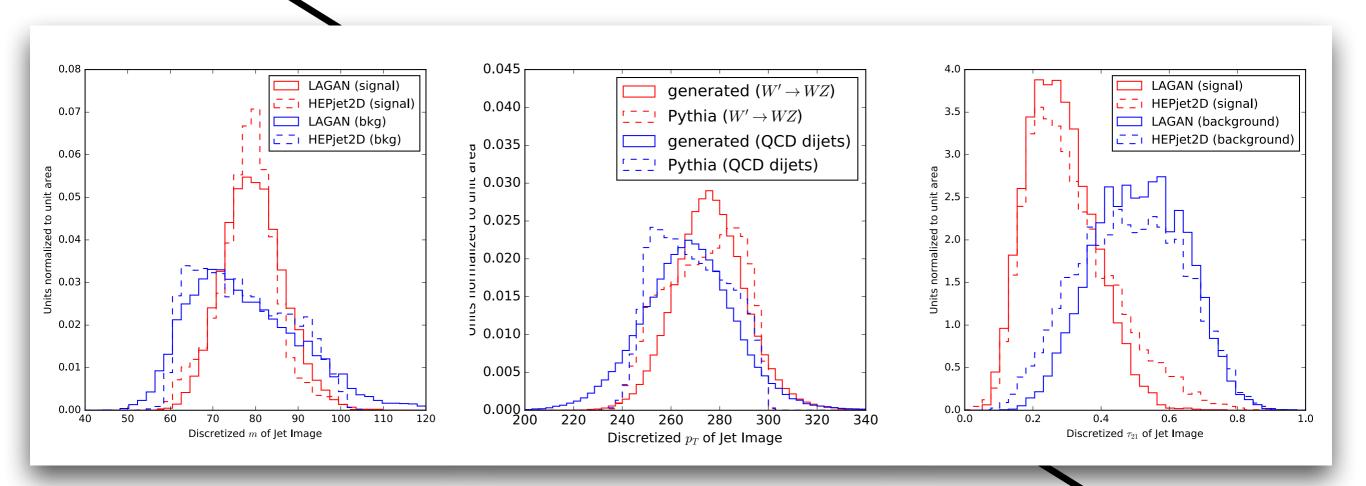
1701.05927

Accelerating Parton/Particle Sim.*

Flat jet images with GANs

M. Paganini, L. de Oliveira, B. Nachman

1701.05927



LA = Locally aware; somewhere between a DNN and a CNN

Weight sharing across space

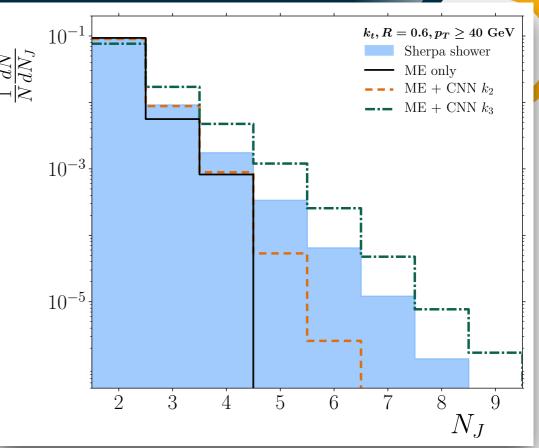
Accelerating Parton/Partic

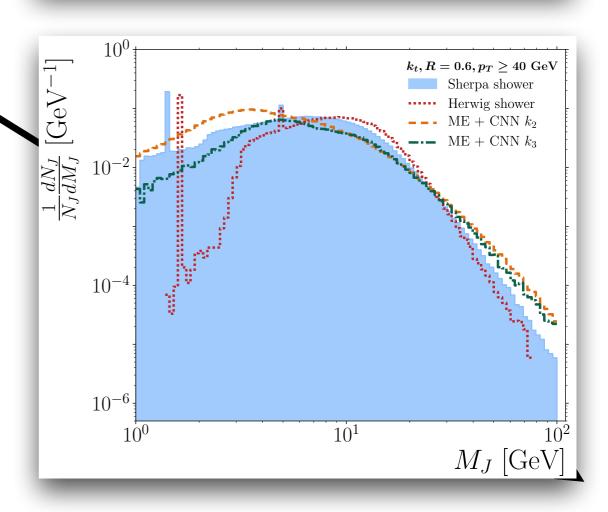
Flat jet images with GANs

M. Paganini, L. de Oliveira, B. Nachman 1701.05927

Scale invariant J. Monk 1807.03685

images with AEs





Weight sharing across space + "time"

*these are just representative examples - see Living Review

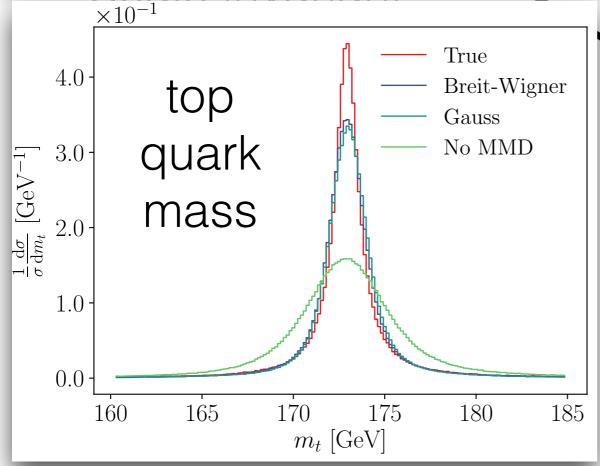


ANS nman

MMD = maximum mean discrepancy

Fixed number of 4vectors, allow for intermediate resonances A. Butter, T. Plehn, R. Winterhalder

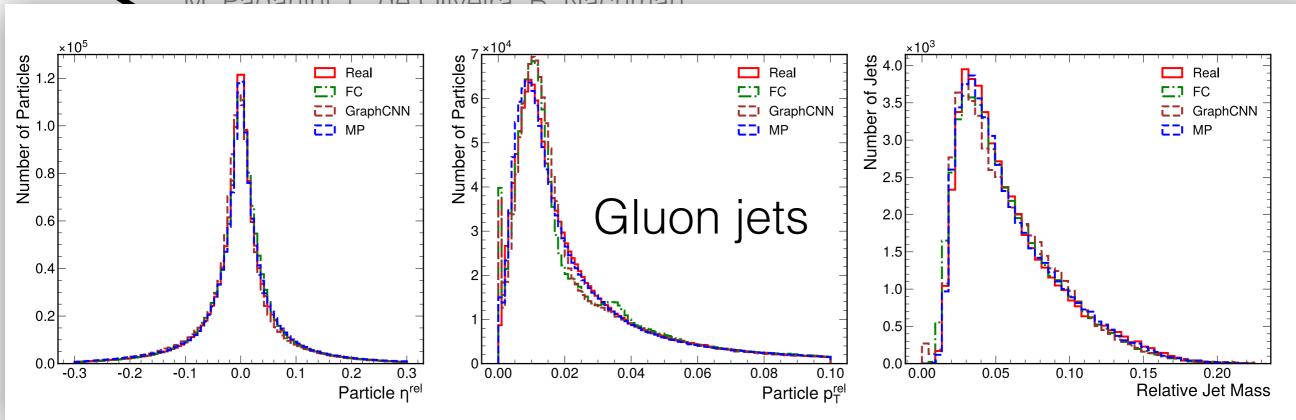
1907.03764



See 2001.11103 for a similar setup used on *ep* scattering

*these are just representative examples - see Living Review

Accelerating Parton/Particle Sim.*



Variable-length output with graphs

R. Kansal et al.

2106.11535

Accelerating Parton/Particle Sim.*

Flat jet images with GANs

M. Paganini, L. de Oliveira, B. Nachman

1701.05927

Scale invariant images with AEs
J. Monk
1807.03685

Fixed number of 4vectors, allow for intermediate resonances A. Butter, T. Plehn, R. Winterhalder

1907.03764

Variable-length output with graphs
R. Kansal et al.

2106.11535

?

31

All of these pictures are fake!

Synthetic Galactic radiation for Cosmic Microwave Background

Material Interactions with High Energy Particles

Accelerate Slow Detector Simulations

10³ MeV (MeV)

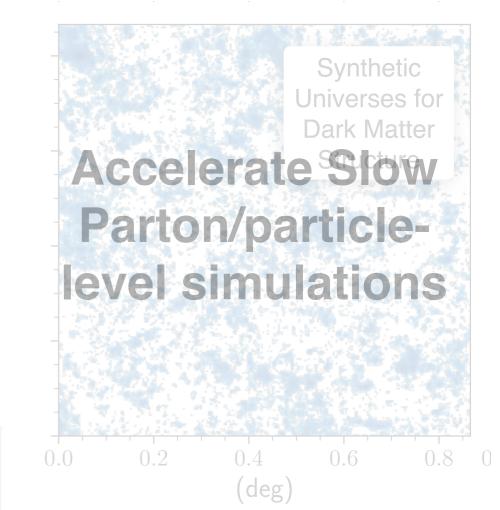
 10^{-1}

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 04200

Background estimation

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

The Structure of Parton/particle-Radiation in the Quantum Strong Forcevel Dynamics



Background Estimation

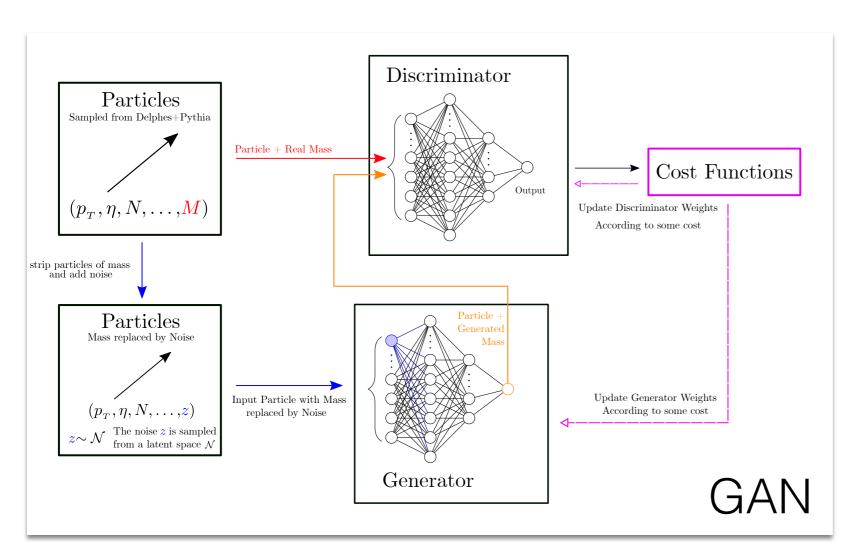
Many cases where simulation is **not good enough** - can train generate models to act as **simulation surrogates**

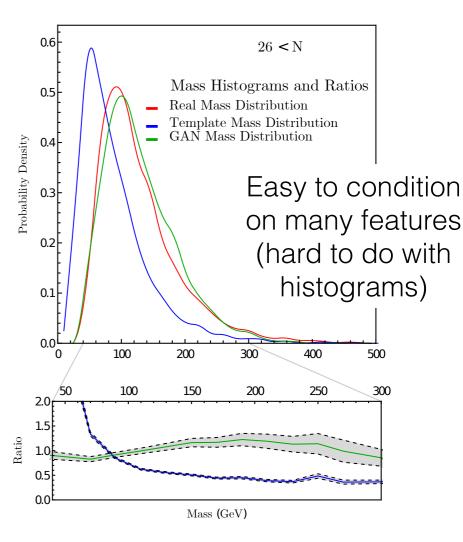
N.B. everything in I've shown before this, we trained on simulation, not on data (!)

Background Estimation

Many cases where simulation is **not good enough** - can train generate models to act as **simulation surrogates**

Example 1: unbinned templates for QCD jets to extrapolate in jet multiplicity



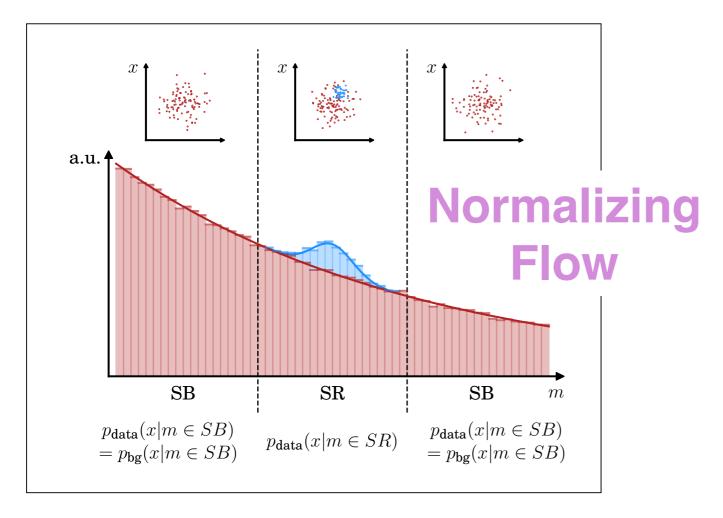


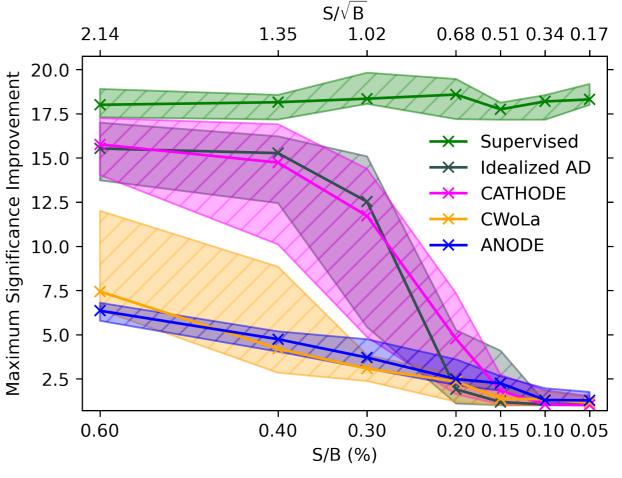
Background Estimation

34

Many cases where simulation is **not good enough** - can train generate models to act as **simulation surrogates**

Example 2: unbinned templates for QCD jets to extrapolate in dijet mass





35

All of these pictures are fake!

Synthetic Galactic radiation for Cosmic Microwave Background

Material Interactions with High Energy Particles

Accelerate Slow Detector Simulations

10³ (NeW) (MeV)

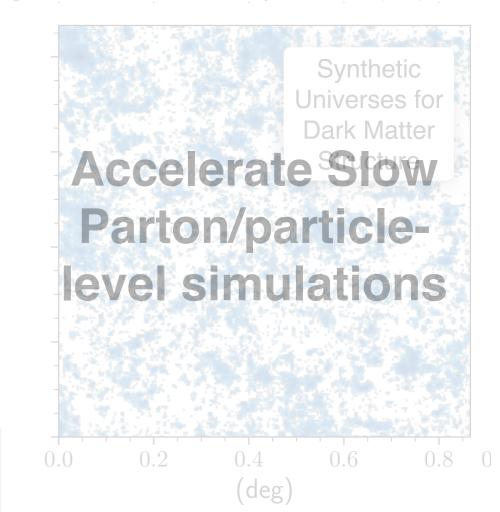
 10^{-1}

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 04200

Background estimation

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

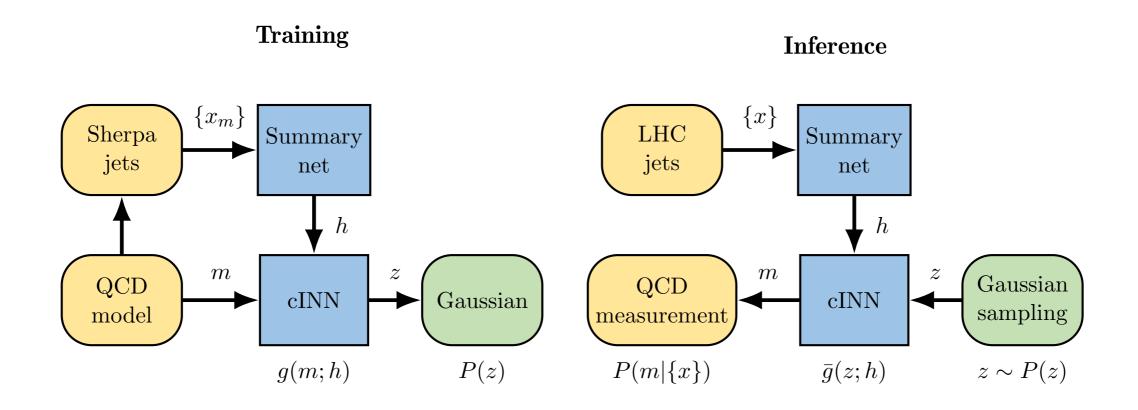
The Structur Infer Parton/particle-Radiation in the Quantum Strong Forclevel Dynamics



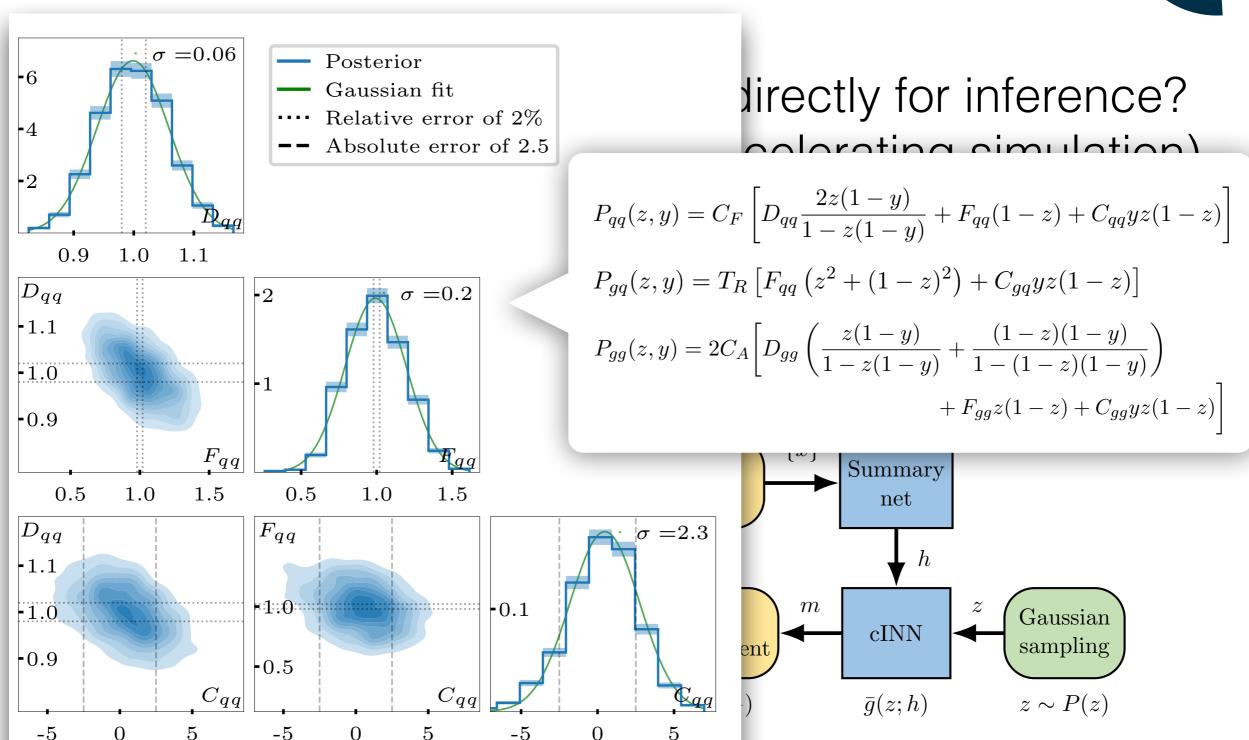
Can we use generative models directly for inference? (and not "just" for augmenting/accelerating simulation)

Can we use generative models directly for inference? (and not "just" for augmenting/accelerating simulation)

Example 1: Inferring fragmentation functions



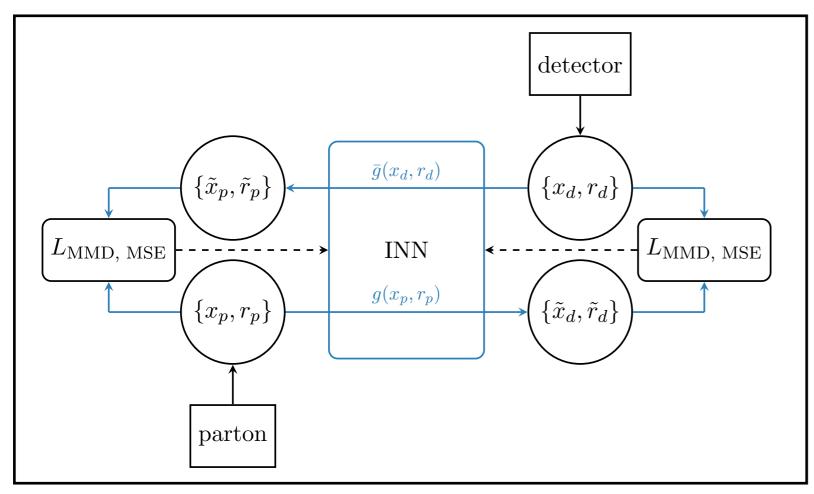
See also 1804.09720 ("JUNIPR") and 2012.06582 (GAN-based)

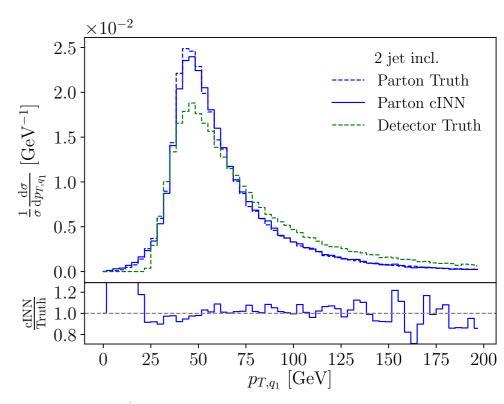


See also 1804.09720 ("JUNIPR") and 2012.06582 (GAN-based)

Can we use generative models directly for inference? (and not "just" for augmenting/accelerating simulation)

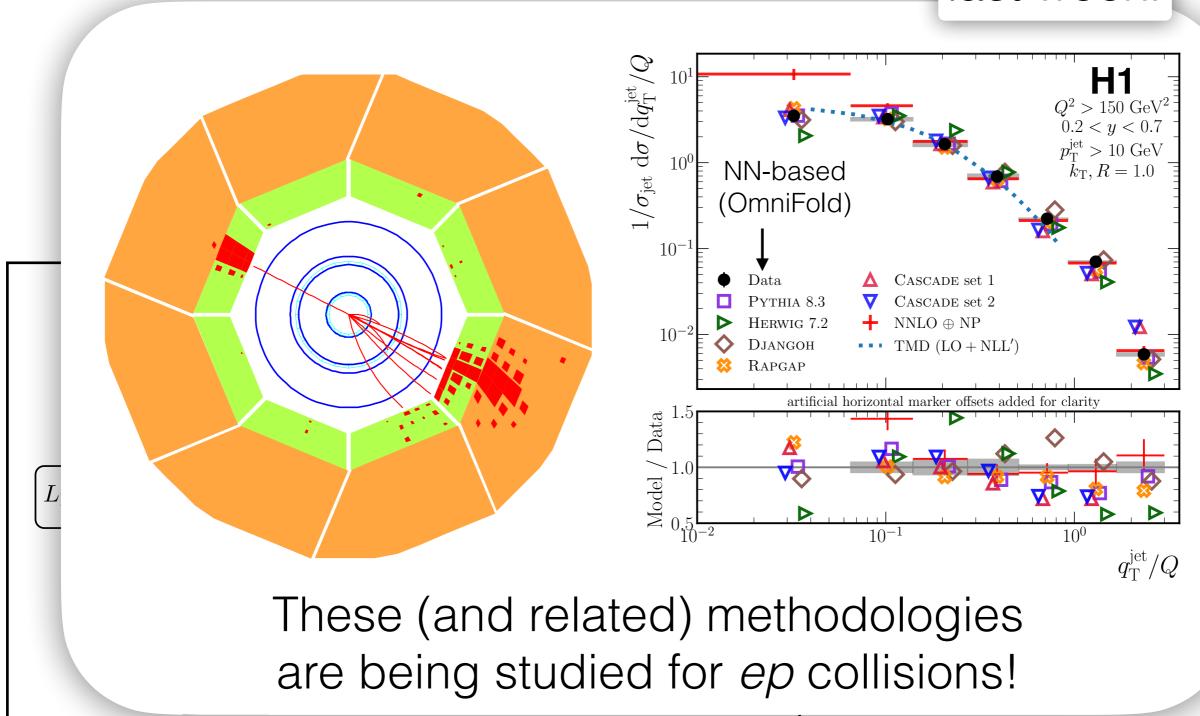
Example 2: Unfolding





See also 1911.09107 ("OmniFold") and 2101.08944 ("OTUS")

came out last week!



200

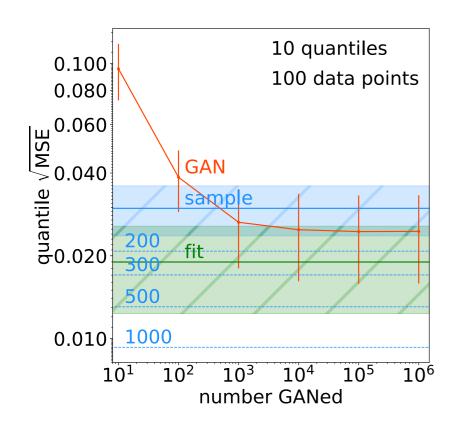
Truth cINN

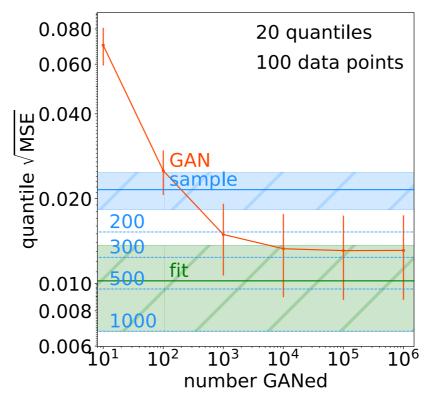
r Truth

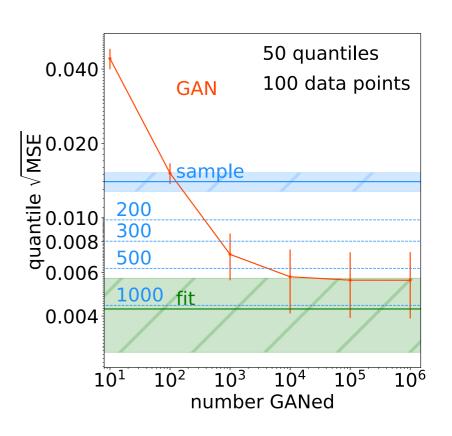
Uncertainties

Performance continues to improve on many fronts. As we integrate these tools into our workflows, we need to think about uncertainties.

One question is about the **statistical power** of samples from a generative model. This depends on the implicit or explicit information we encode in the networks.







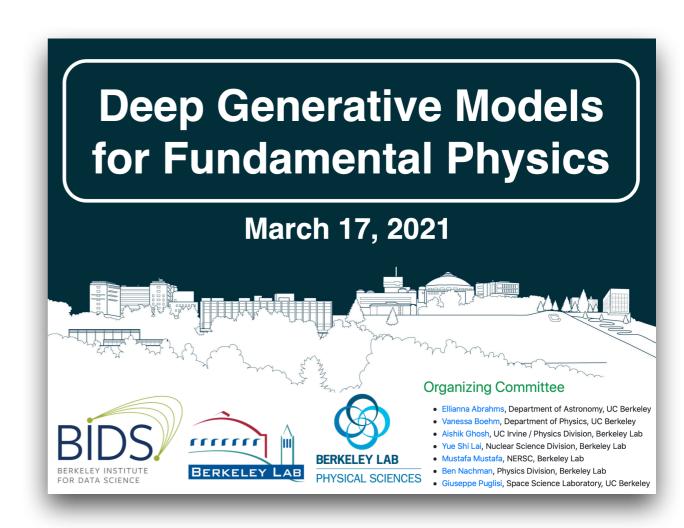
Conclusions and Outlook

Generative models hold great promise for enhancing, supplanting, and extending simulations for collider physics

The examples I gave today were not comprehensive - see the <u>Living Review</u> for more references

All of the techniques I discussed today could be used for **physics at the EIC!**

This is a link to a recent
Berkeley workshop dedicated
to generative models →



Backup

